BALABHADRA SKILL DEVELOPMENT ACADEMY MATHS FORMULA - 21

PROBABILITY

SI	Situation	Formula
1	The experiment which have only one	
	possible result or outcomes i.e. whose	,
	result is certain or unique is called a	
	or experiment.	
2	An experiment in which all the	
	outcomes are known in advance but the	Dandon
	specific outcome that will occur is not	Random
	known, is called a experiment.	
3	The set of all possible outcomes in a	150
	random experiment is known as,	Sample space, S
	It is denoted by	- 5.
4	Each outcome of a sample space is a	*: **
		Sample Point
	<u> </u>	25
5	An event is subset of a sample space.	A={HH,TT}=Same denominations
	In tossing of two coins,	appear on the both the coins
		and
	/2 	B={HT,TH}=Different
}		denominations appear on both the
		coins, Here A and B are two events
		of the same sample space
6	An event having only a single sample	S={HH,HT,TH,TT}
	point is called a simple event. In tossing	E={HH} is a simple event
7	of two coins, An event other than a simple event is	S={HH,HT,TH,TT}
	called a compound event. In tossing of	E={HH,HT,TH} is a compound
	two coins	event
		O' O' I'C

8	Two events A and B are said to be independent events. If the happeing (or non-happening) of any one event does not affect the happening (non-happening) of the other. If A and B are independent events, then	$P(A \text{ and } B) = P(A \cap B) = P(A).P(B)$
9	A set of events is said to be mutually exclusive and exhaustive events. If events are exclusive as well as exhaustive.	$E_1 \cup E_2 \cup \cup E_n = S$ and $E_1 \cap E_2 \cap \cap E_n = \emptyset$ then these events are known as mutually exclusive and exhaustive events.
10	If from n events associated with a random experiment, m events are in favour of event E, then probability of event E is denoted by P(E) and	$P(E) = \frac{m}{n}$ So, it is clear that, $0 \le m \le n = 0 \le P(E) \le 1$
11	Probability of non-occurrence of event E is denoted by $P(\overline{E})$, then	$P\overline{(E)} = \frac{n-m}{n} = 1 - P(E)$
12	If in a random experiment, sample space is S and event $E \subseteq S$, then probability of occurrence of an event E,	$P(E) = \frac{n(E)}{n(S)}$ Where, n(E) is the number of sample points in E and n(S) is the number of sample points in S.
13	The probability of certain event is 1 and that of impossible event is 0 i.e.	$P(S)=1$ and $P(\emptyset)=0$
14		$P(E) = \frac{\text{Number of sample points in favour of E}}{\text{Total number of sample points}}$ $P(E) = \frac{m}{m+n}$ $=> P(E'_1 \cup E'_2) = 1 - P(E_1 \cap E_2)$ $=> P(E'_1 \cap E'_2) = 1 - P(E_1 \cup E_2)$ $=> P(E_1 \cap E'_2) = P(E_1) - P(E_1 \cap E_2)$
15	If E_1 and E_2 are events associated with a random experiment, then probability of occurrence of E_1 or E_2	$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$ Where, $P(E_1 \cup E_2)$ is the probability of occurrence of E_1 and E_2
16	If E_1 and E_2 are mutually exclusive events, then	$P(E_1 \cup E_2) = P(E_1) + P(E_2)$

.

ř