BALABHADRA SKILL DEVELOPMENT ACADEMY MATHS FORMULA - 10 ARITHMETIC

COMPOUND INTEREST

SI	Situation	Formula
1	If compound interest accrued on Rs. P	
	at r % rate of compound interest for t	$(i)A = P\left(1 + \frac{r}{100}\right)^{t}$
	yr is CI and compound amount Rs. is A,	Tuy, Tuy
	then	$(iii)CI=P\left\{\left(1+\frac{r}{100}\right)^{t}-1\right\}$
	tilen	(iv) $r = \left\{ \left(\frac{A}{P} \right)^{1/t} - 1 \right\} \times 100\%$
		$(V)P = \frac{A}{\left(1 + \frac{r}{100}\right)^{t}}$
		(vi)compound interest (CI)= $SI(1 + \frac{r}{200})$
1	76 (-1	
2	If interest is compounded half-yearly, then	$Amount=P\left(1+\frac{R}{2\times100}\right)^{2t}$
3	If interest is compounded quarterly,	R \4t
	then	$Amount = P\left(1 + \frac{R}{4 \times 100}\right)^{4t}$
4	If interest is compounded annually but	**
	time is given in fraction(say time,	Amount = $P\left(1 + \frac{r}{100}\right)^c \times \left(1 + \frac{(a/b)^r}{100}\right)$
	$t=c\frac{a}{b}yr)$,then	$\frac{1}{100} \times \left(1 + \frac{1}{100}\right) \times \left(1 + \frac{1}{100}\right)$
5	The difference between simple and	$(i) \frac{Pr^2}{(100)^2}$
	compound interests accrued on Rs. P at	$(1) {(100)^2}$
	the rate of interest of r%	$Pr^{2}(300+r)$
	(i) for 2yr is equal to and	(ii) $\frac{Pr^2(300+r)}{(100)^3}$
_	(ii) for 3 yr equal to	
6	When the rates of interest for three	$A = D \left(\frac{r_1}{r_2} \right) \left(\frac{r_2}{r_3} \right) \left(\frac{r_2}{r_3} \right)$
	consecutive years are $r_1\%$, $r_2\%$, and	A= P $\left(1 + \frac{r_1}{100}\right) \left(1 + \frac{r_2}{100}\right) \left(1 + \frac{r_3}{100}\right)$
7	r_3 %, respectively, then If an amount becomes x_1 times of itself	
'	in n_1 year and x_2 times of itself in n_2 yr.	
	Or	$\left(\alpha \sqrt{\frac{1}{2}} \right)$
	If a sum of money becomes Rs x_1 after	Rate of interest, $r = \left\{ \left(\frac{X_2}{X_1} \right)^{\frac{1}{n_2 - n_1}} - 1 \right\} \times$
	n_1 yr at the rate of compound interest	100%
	and Rs x_2 after n_2 yr, then	10070

8	If compound interest on an amount for 2 yr at some rate of interest is CI and simple interest on the same amount at the same rate of interest for 2 yr is SI, then	Principal = $\frac{(SI)^2}{4(CI-SI)}$
9	If compound interests on an amount for two consecutive years are C_1 and C_2 respectively, then	Rate of interest = $\frac{c_2 - c_1}{c_1} \times 100\%$
10	If simple interest for a certain sum for 2 yr at the annual rate of interest R% is SI, then compound interest for same duration and same rate is	$CI=SI\left(1+\frac{R}{200}\right)$
11	If a loan of A at R% compound interest per annum is to be repaid in n equal yearly instalments, then the value of each instalment is given by	$\frac{A}{\left(\frac{100}{100+R}\right) + \left(\frac{100}{100+R}\right)^2 + \dots + \left(\frac{100}{100+R}\right)^n}$