BALABHADRA SKILL DEVELOPMENT ACADEMY MATHS FORMULA - 4 MENSURATION

Rectangle

- (a) Perimeter = $2 \times (length + breadth)$
- (b) Area = length × breadth

Square

- (a) Perimeter = $4 \times \text{length of its side}$
- (b) Area of a square = side \times side = (side)²

Triangle

- (a) Perimeter of an equilateral triangle = $3 \times \text{length of a side}$
- (b) Area of triangle = $1/2 \times (Base \times Height)$
- (c) Pythagoras Theorem = (Hypotenuse)² = (Perpendicular)² + (Base)² $h^2 = p^2 + b^2$ (for right angled triangle)

4. Circle

- (a) Area of circle = nr²
- (b) Circumference of circle = π d= $2\pi r$, where 'd' is the diameter of a circle, 'r' is radius and π =22/7 or 3.14
- (c) Diameter of the circle, $d = 2 \times r$
- (d) Sector angle of the circle, $\theta = (180 \times I) / (n \times r)$; L-length of area
- (e) Area of the circular ring = $\pi \times (R^2 r^2)$; where R radius of the outer circle and r radius of the inner circle
- (f) Area of the sector of angle $\theta = (\theta/360) \times \pi r^2 = (\theta/2) \times r^2$
- (g) Length of an arc of a sector of angle $\theta = (\theta/360) \times 2\pi r = \theta r$

5. Parallelogram

- (a) Perimeter of Parallelogram = $2 \times (Length + Breadth)$
- (b) Area = Base x height

6. <u>Cuboid</u>

- (a) **LSA** = 2h(1+b),
- (c) TSA = 2(lb+bh+hl)
- (d) **Volume =** I × b × h (I = length, b = breadth, h = height) (LSA- Lateral/ curved surface area, TSA- Total Surface area)

162

7. <u>Cube</u>

- (a) **LSA** = $4a^2$
- (b) **TSA** = $6a^2$
- (c) Volume = a^3

8. Right Pyramid

- (a) LSA= $\frac{1}{2}(p \times l)$ (p= perimeter of the base, L- slant height)
- (b) TSA= LSA + Area of the base
- (c) **Volume** = 1/3 x Area of the base x h

9. Right Circular Cylinder

- (a) LSA = $2(\pi \times r \times h)$
- (b) **TSA** = $2\pi r (r+h)$
- (c) **Volume=** $n \times r^2 \times h$ (r= radius, h= height)

10. **Prism**

- (a) LSA= $p \times h$
- (b) TSA = LSA + 2B
- (c) **Volume=** $B \times h$ (p = perimeter of the base, B = area of base, h = height)

11. Right Circular Cone

- (a) **LSA** = nrl
- (b) **TSA** = $n \times r \times (r + l)$
- (c) **Volume=** $\frac{1}{3} \times (\pi r^2 h)$ (r = radius, I = slant height, h = height)

12. Hemisphere

- (a) LSA= $2 \times \pi \times r^2$
- (b) **TSA=** $3 \times n \times r^2$
- (c) Volume= $2/3 \times (\pi r^3)$

13. Sphere

- (a) LSA= $4 \times \pi \times r^2$
- (b) **TSA** = $4 \times n \times r^2$
- (c) **Volume** = $4/3 \times (\pi r^3)$

14. <u>Cone</u>

- (a) Slant height= $I=\sqrt{h^2+r^2}$
- (b) LSA= nrl
- (c) **TSA** = $\pi r (r+1)$
- (d) **Volume=** $1/3\pi r^2 h$

