BALABHADRA SKILL DEVELOPMENT ACADEMY MATHS FORMULA - 23

SQUARE AND SQUARE ROOT

SI	Situation	Formula
1(2)	If number of digits in any number is	k
	even (say k), then its square root has	2
	number of digits	
3 🐑	if number of digits in any number is	$\left(\frac{k+1}{2}\right)$
	odd (say k), then number of digits in its	(2)
	square root will be	
2	If any number is in the form $\frac{1}{\sqrt{a}\pm\sqrt{b}}$, then	
	to rationalize its denominator, the	$\sqrt{a} \mp \sqrt{b}$
	numerator and denominator should be	Va i vo
	multiplied by	7.
3	If 2,3,7 or 8 are units place digits of	
	any number, then this number will not	Perfect square
	be a	24.00
4	To find the square root of any number	x = y + z
	upto two places of decimal, given	Where y is the greatest square
	number should be divided in such a	number contained in x. Then,
	way that one part is perfect square i.e.	$\sqrt{x} = \sqrt{y \pm z} = \sqrt{y} \pm \frac{z}{2\sqrt{y}}$
l		= V.Z.

INDICES AND SURDS

SI	Situation	Formula
1	Let 'a' be a real number and m be a	$a \times a \times a \times \dots m$ times = a^m
	positive integer and if 'a' is multiplied	
	by itself 'm' times i.e.	₹
2	Let 'a' and 'm' be a rational number and	
	a positive integer, respectively. If a ^{1/m} is	$a^{1/m} = \sqrt[m]{a} = mth root of a$
	an irrational number, then a ^{1/m} is known	
	as surd of power m.	

3	. Let a and b be two real numbers and m	(i) $a^m \times a^n = a^{m+n}$
_	and n are two positive integers, then	$(ii) \frac{a^m}{a^n} = a^{m-n}$
		(iii) $(a^m)^n = a^{mn}$
		$(iv) a^{-m} = \frac{1}{a^m}$
		$(v) (ab)^m = a^m b^m$
		$(\forall i) \left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
		(vii) $a^{\circ} = 1$
1		

FRACTION

	9	Formula
SI	Situation	
1.	A number which can be expressed in	Fraction, numerator, denominator
	the form of $\frac{p}{q}$ where $q \neq 0$, is known as	
	Here, p and q are respectively	***
	known as and of fraction.	
2.	If the numerator is equal to	0.77
	denominator, then the value of fraction	; One
	is equal to	
3.	When numerator is zero and	<u> </u>
	denominator is not equal to zero, then	Zero
	value of fraction is	
4.	The denominator of a fraction is always	
	assumed to be non-zero but in case	Infinity
	when denominator is zero, then value	
	of fraction is equal to	
5.	When numerator and denominator are	1
	multiplied or divided by the same	Unchanged
	number, then value of fraction	
	remains	
6.	If numerator and denominator are do	
	not have any common factor, then the	Lowest form
	fraction is said to be in its	
7.	If the numerator of a fraction is greate	
	than its denominator, then fraction is	Improper fraction
	known as an	

8.	Evample of improper fraction is	12
0.	Example of improper fraction is	$\frac{13}{4}$
9.	The fractions which are formed by	
	using an integer and a proper fraction	
	are known as	Plixed fraction
10.	Example of mixed fraction is	1
10.	Example of finized fraction is	$3\frac{1}{4}$
11.	A fraction of a fraction is known as a	1
		Compound fraction
12.	Example of compound fraction is	3 11 33
		$\frac{3}{5}$ of $\frac{11}{3}$, i. e. $\frac{33}{65}$
13.	A fraction in which either the numerator	
	or denominator or both are fractions, is	Complex fraction
	known as a	a. 14.
14.	Example of complex fraction is	1 + 2
	Same Same	$\frac{2 \cdot 3}{3 \cdot 2}$
		$\frac{3}{4} - \frac{2}{9}$
15.	A fraction which contains an additional	5
	fraction in the numerator or in the	Continued fraction
	denominator, is known as a	~
16.	Example of continued fraction is	1
		2 +1
		$3 + \frac{1}{1}$
		$1 + \frac{1}{4}$
17.	Fractions can be compared by	Decimal form, denominators,
	, and	numerators
18.	A decimal in which all the figures recur,	Dogumine desired
	is known as pure	Recurring decimal
19.	Example of recurring decimal is	$\frac{1}{2} = 0.222 = 0.7$
		$\frac{1}{3} = 0.333 \dots = 0.\overline{3}$
20.	A recurring decimal in which some	Mixed recurring decimal
	figures do not recur, is known as	
21.	Example of mixed recurring decimal is	0.1236

22.	A pure recurring decimal is equal to a fraction which has the recurring numeral as its numerator and its denominator has as many nines as is the number of recurring digits.	$0.\overline{xyz} = \frac{xyz}{999}$
23.	A mixed recurring decimal is equal to a fraction whose numerator is the difference between the number formed by all the digits after decimal point (recurring digits are taken only once) and the number formed by non-recurring digits and whose denominator is the number formed by as many nines as there are recurring digits followed by as many zeroes as there are non-recurring digits.	$0.xy\overline{ab} = \frac{xyab - ab}{9900}$

