BALABHADRA SKILL DEVELOPMENT ACADEMY MATHS FORMULA - 9 ARITHMETIC

SIMPLE INTEREST

SI	Situation	Formula
01	Simple Interest (P- Principle, t- time,	SI=Principle×Time×Rate
	r- rate of interest)	100
	î .	$=\frac{\text{prt}}{100}$
02	Amount	
02	Amount	$A = P\left(1 + \frac{rt}{100}\right) = P\left(\frac{1000 \text{ t}}{100}\right)$
03	Principal	$P = \frac{100 \times A}{100 + rt}$
04	Simple Interest	$SI = \frac{Art}{100 + rt}$
05	If rate of interest becomes r ₂ % from r ₁	x × 100
	% and Rs. x more are earned in t yr,	$\frac{1}{(r_2-r_1)\times t}$
	then principal	$(I_2-I_1) \wedge t$
06	The time taken by an amount to	(= 1) + 100
	become n times of itself at r% rate of	$\frac{(n-1)\times 100}{r}$
	simple interest is	r
07	An amount will be n times of itself in t	$\left[\frac{(n-1)\times 100}{t}\right]\%$
	yr. The rate of interest is	[
80	If an amount becomes n ₁ times of itself	
	in t ₁ yr at same rate of simple interest,	(1)-
	then the time taken by the amount to	$t_2 = \frac{(n_2 - 1)t_1}{(n_2 - 1)} \text{ yr}$
	become n ₂ times of itself at the same	(n_1-1)
	rate of interest	
09	If an amount becomes n ₁ times of itself	
	in a time at r ₁ % rate of simple interest,	42
	then in the same time period, the rate	$r_2 = \frac{(n_2 - 1) \times r_1}{(n_1 - 1)}$
	of interest to make the sum n ₂ times of	$(n_1 - 1)$
	itself is	

10	If the difference of interests on P obtained from two sources in time t yr be x, then the difference in the rates of interest will be	$\frac{x \times 100}{P \times t}$
	If a sum is divided in two parts such that the simple interest on first part in t_1 yr at r_1 % rate of interest is equal to the simple interest on second part in t_2 yr at r_2 % rate of interest; the ratio of two parts	$\frac{1}{r_1 t_1} : \frac{1}{r_2 t_2}$
12	The annual payment that will discharge a debt of A due in t yr the rate of interest r% per annum is	$\left[\frac{100A}{100t + \frac{rt(t-1)}{2}}\right]$
13	If a certain sum of money amounts to x in t ₁ yr and to y in t ₂ yr, then (i) Principal (ii) Rate	(i) $\frac{xt_2-yt_1}{t_2-t_1}$ (ii) $\frac{(y-x)\times 100}{xt_2-yt_1}$
14	Out of a certain sum P, $1/a$ part is invested at $R_1\%$, $1/b$ part at $R_2\%$ and the remainder $(1-1/a-1/b)$, say $1/c$ part at $R_3\%$. If the annual income from all these investments is Rs. A, then the original sum is given by	$P = \left(\frac{A \times 100}{\frac{R_1}{a} + \frac{R_2}{b} + \frac{R_3}{c}}\right)$

Note. To calculate interest, the day on which amount is deposited is not considered. But the day on which amount is withdrawn is considered.